

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR/SUPPLEMENTARY EXAMINATIONS, JAN - 2023 MATHEMATICS-III
(Common to CE,EEE,ME,ECE,CSE,CSIT,IT,AME,CSE(IoTCSBT) Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	Write the Newton Raphson formula to find the cube root of N.	[2M]	1	
	b)	Explain merits and demerits of R-K method.	[2M]	2	
	c)	Write Dirichlet's conditions in Fourier series	[2M]	3	
	d)	Write the Fourier cosine transform	[2M]	4	
	e)	Form a PDE by eliminating the arbitrary constants a and b from $\tilde{x} a_{a}^{2}, \tilde{y} b^{2} \stackrel{\circ}{\circ} z 2 \cot 2 \rightarrow$.	[2M]	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Find an approximate value of the real root of $\tilde{x^{2}} 4 \tilde{x} 9 \times \circ 0$ by Bisection method.	[5M]	1	
	b)	Using Lagrange's formula, express the function $3 x^{2} \times 1$ as a sum of partial fractions. x. $\begin{array}{rl}x & 2 \\ 2 & x\end{array}$	[5M]	1	
OR					
3.	a)	Find an approximate value of the real root of the equation $x \log _{10} x \times 1.2$ by Regula falsi method correct up to four decimal places.	[5M]	1	
	b)	\qquad	[5M]	1	
UNIT-II					
4.	a)	Find by Taylor's series method the values of y at x ํㅇ 0.1 and $x{ }^{\circ \circ} 0.2$ to five places of decimals from $\begin{gathered}d y{ }_{\times \circ} x^{2} \tilde{y} 1, y 0 \times{ }^{\circ} 11\end{gathered}$	[5M]	2	
	b)	Using Modified Euler's method, find $y 0.2$ and $y 0.4$ given that $d y$ × y ex, $y 0$ @ ${ }^{\circ} 0$	[5M]	2	
OR					

5.	Using Runge-Kutta method of fourth order to find y at $x{ }^{\circ} 00.1$ given that $\frac{d y}{d x} \times 3 e x .2 y, y 0 \times 0$ and $h \times 0.1$	[10M]	2	
UNIT-III				
6.		[10M]	3	
OR				
7.		[10M]	3	
UNIT-IV				
8.	\qquad	[10M]	4	
OR				
9.	Find the finite Fourier sine and cosine transform of $f x_{0}$ defined by $f x \times{ }^{\circ} \times x \text {, where } 0 \stackrel{\circ}{\circ} x \stackrel{\circ}{\circ} 4$	[10M]	4	
UNIT-V				
10.	Solve $3 u_{x} 2 u_{y}^{\circ \circ} 0$ and $\underline{u} x, 0 \times{ }^{\circ \circ} 4 e^{x}$ by the method of separation of variables.	[10M]	5	
OR				
11.	Derive one-dimensional heat flow equation.	[10M]	5	

